软文推广:OpenJDK16ZGC源码分析

概览ZGC 在 JDK11 中作为实验性功能引入后,已经经过了 5 个版本的演进,目前较之前版本有了较大的变化。本文将分析 ZGC 的设计思想和原理。ZGC 主要设计理念如下:ZGC 为了支持

 概览

ZGC 在 JDK11 中作为实验性功能引入后,已经经过了 5 个版本的演进,目前较之前版本有了较大的变化。本文将分析 ZGC 的设计思想和原理。

ZGC 主要设计理念如下:

ZGC 为了支持 TB 级内存,采用了基于 Page 的分页管理(类似于 G1 的 Region)。同时,为了加快内存访问速度,快速的进行并发标记和 relocate,ZGC 新引入了 Color Pointers;Color Pointers 与 Shenandoah GC 使用的 Brooks Pointers 机制不同,依赖内核提供的多视图映射,因此仅能支持部分操作系统的 64 位版本,适用性不如 Shenandoah GC,同时也无法支持指针压缩 CompressedOops。另外,为了高效内存管理,设计了两级内存管理系统。内存管理指针结构

zGlobals_x86.cpp

// Address Space & Pointer Layout 3 // -------------------------------- // //+--------------------------------+ 0x00007FFFFFFFFFFF (127TB) //.. //.. //.. //+--------------------------------+ 0x00000 (80TB) //| Remapped View| //+--------------------------------+ 0x00000 (64TB) //.. //+--------------------------------+ 0x00000 (48TB) //| Marked1 View | //+--------------------------------+ 0x00000 (32TB) //| Marked0 View | //+--------------------------------+ 0x00000 (16TB) //.. //+--------------------------------+ 0x00000 // // 6 444 4 // 3 874 3 0 //+------------------+----+-------------------------------------------------+ //||1111|1111 | //+------------------+----+-------------------------------------------------+ //||| //||* 43-0 Object Offset (44-bits, 16TB address space) //|| //|* 47-44 Metadata Bits (4-bits)0001 = Marked0(Address view 16-32TB) //|0010 = Marked1(Address view 32-48TB) //|0100 = Remapped (Address view 64-80TB) //|1000 = Finalizable(Address view N/A) //| //* 63-48 Fixed (16-bits, always zero) //ZGC 指针布局有三种方式,分别用于支持 4TB、8TB、16TB 的堆空间,以上代码用于为 layout 3 支持 16TB 的布局;43-0 bit 对象地址;47-44 对象视图,分为三种对象视图:Marked0、Marked1Remappedx86 和 aarch64 架构下最多仅支持 48 位指针,主要是因为硬件限制。通常为了节约成本,64 位处理器地址线一般仅 40-50 条,因此寻址范围远不及 64 位的理论值。多视图

ZGC 将同一段物理内存映射到 3 个不同的虚拟内存视图,分别为 Marked0、Marked1、Remapped,这即是 ZGC 中的 Color Pointers,通过 Color Pointers 区分不同的 GC 阶段。

映射

ZGC 的多视图映射依赖于内核提供的 mmap 方法,具体代码如下

zPhysicalMemory.hpp, zPhysicalMemory.cpp, zPhysicalMemoryBacking_linux.cpp

// 物理内存管理类 class ZPhysicalMemory { private: ZArray<ZPhysicalMemorySegment> _segments; void insert_segment(int index, uintptr_t start, size_t size, bool committed); void replace_segment(int index, uintptr_t start, size_t size, bool committed); void remove_segment(int index); public: ZPhysicalMemory(); ZPhysicalMemory(const ZPhysicalMemorySegment& segment); ZPhysicalMemory(const ZPhysicalMemory& pmem); const ZPhysicalMemory& operator=(const ZPhysicalMemory& pmem); bool is_null() const; size_t size() const; int nsegments() const; const ZPhysicalMemorySegment& segment(int index) const; void add_segments(const ZPhysicalMemory& pmem); void remove_segments(); void add_segment(const ZPhysicalMemorySegment& segment); bool commit_segment(int index, size_t size); bool uncommit_segment(int index, size_t size); ZPhysicalMemory split(size_t size); ZPhysicalMemory split_committed(); }; // 将三个虚拟内存视图映射到同一物理内存 // 在JDK14中增加了对于ZVerifyViews JVM参数的支持() void ZPhysicalMemoryManager::map(uintptr_t offset, const ZPhysicalMemory& pmem) const { const size_t size = pmem.size(); if (ZVerifyViews) { // Map good view map_view(ZAddress::good(offset), pmem); } else { // Map all views map_view(ZAddress::marked0(offset), pmem); map_view(ZAddress::marked1(offset), pmem); map_view(ZAddress::remapped(offset), pmem); } nmt_commit(offset, size); } void ZPhysicalMemoryManager::map_view(uintptr_t addr, const ZPhysicalMemory& pmem) const { size_t size = 0; // 逐个映射物理内存 // ZGC中使用segment管理物理内存,后续文章将详细介绍 for (int i = 0; i < pmem.nsegments(); i++) { const ZPhysicalMemorySegment& segment = pmem.segment(i); _backing.map(addr + size, segment.size(), segment.start()); size += segment.size(); } // Setup NUMA interleaving for large pages if (ZNUMA::is_enabled() && ZLargePages::is_explicit()) { // To get granule-level NUMA interleaving when using large pages, // we simply let the kernel interleave the memory for us at page // fault time. os::numa_make_global((char*)addr, size); } } // 最终对于map的调用 // 对于linux系统,调用mmap进行映射 void ZPhysicalMemoryBacking::map(uintptr_t addr, size_t size, uintptr_t offset) const { // 可读、可写、修改共享 // 如果参数start所指的地址无法成功建立映射时,则放弃映射,不对地址做修正。 const void* const res = mmap((void*)addr, size, PROT_READ|PROT_WRITE, MAP_FIXED|MAP_SHARED, _fd, offset); if (res == MAP_FAILED) { ZErrno err; fatal("Failed to map memory (%s)", err.to_string()); } }ZPhysicalMemory 是 ZGC 对于物理内存管理的抽象,收敛 ZGC 对于物理内存的访问。ZPhysicalMemory 底层根据宿主操作系统调用不同的 ZPhysicalMemoryBacking 实现,进行多视图映射。物理内存管理

ZGC 对于物理内存的管理主要在 ZPhysicalMemory 类中,此处需要注意,ZGC 上下文中的物理内存,不是真正的物理内存,而是操作系统虚拟内存。

<a href=https://www.tuishengyi.com/wltg/ target=_blank class=infotextkey>软文推广</a>:OpenJDK16ZGC源码分析

ZGC 中管理物理内存的基本单位是 segment。segment 默认与 small page size 一样,都是 2MB。引入 segment 是为了避免频繁的申请和释放内存的系统调用,一次申请 2MB,当 segment 空闲时,将加入空闲列表,等待之后重复使用。

zGlobals_x86.hpp

// 默认page size偏移量 const size_t ZPlatformGranuleSizeShift = 21; // 2MB

ZPhysicalMemorySegment 是 ZGC 对于物理内存 segment 的抽象,定义如下:

zPhysicalMemory.cpp

private: // 开始偏移量 uintptr_t _start; // 开始偏移量+size uintptr_t _end; bool_committed; public: ZPhysicalMemorySegment(); ZPhysicalMemorySegment(uintptr_t start, size_t size, bool committed); uintptr_t start() const; uintptr_t end() const; size_t size() const; bool is_committed() const; void set_committed(bool committed); };页面管理Page 介绍

ZGC 中内存管理的基本单元是 Page(类似于 G1 中的 region),ZGC 有 3 种不同的页面类型:小型(2MB),中型(32MB)和大型(2MB 的倍数)。

zGlobals_x86.hpp

const size_t ZPlatformGranuleSizeShift = 21; // 2MB

zGlobals.hpp

// Page types const uint8_t ZPageTypeSmall= 0; const uint8_t ZPageTypeMedium = 1; const uint8_t ZPageTypeLarge= 2; // Page size shifts const size_tZPageSizeSmallShift = ZGranuleSizeShift; extern size_t ZPageSizeMediumShift; // Page sizes // small page 2MB const size_tZPageSizeSmall= (size_t)1 << ZPageSizeSmallShift; extern size_t ZPageSizeMedium; // 对象size限制,small page不超过2MB/8, 256KB const size_tZObjectSizeLimitSmall = ZPageSizeSmall / 8; // 12.5% max waste extern size_t ZObjectSizeLimitMedium;

medium 页 size 的计算方法如下:

zHeuristics.cpp

void ZHeuristics::set_medium_page_size() { // Set ZPageSizeMedium so that a medium page occupies at most 3.125% of the // max heap size. ZPageSizeMedium is initially set to 0, which means medium // pages are effectively disabled. It is adjusted only if ZPageSizeMedium // becomes larger than ZPageSizeSmall. const size_t min = ZGranuleSize; const size_t max = ZGranuleSize * 16; const size_t unclamped = MaxHeapSize * 0.03125; const size_t clamped = clamp(unclamped, min, max); const size_t size = round_down_power_of_2(clamped); if (size > ZPageSizeSmall) { // Enable medium pages ZPageSizeMedium = size; ZPageSizeMediumShift= log2_intptr(ZPageSizeMedium); ZObjectSizeLimitMedium= ZPageSizeMedium / 8; ZObjectAlignmentMediumShift = (int)ZPageSizeMediumShift - 13; ZObjectAlignmentMedium= 1 << ZObjectAlignmentMediumShift; } }取堆最大容量(Xmx)的 0.03125 unclamped;如果 unclamped 在 2MB 到 32MB 之间,clamped 赋值 unclamped;如果 unclamped 小于 2MB,则 clamped 赋值 2MB;如果 unclamped 大于 32MB,则 clamped 赋值 32MB;向下取 clamped 最接近的 2 的幂数,即为 medium 页 size;考虑到目前的硬件环境,通常的 medium 页 size 为 32MB;ZObjectSizeLimitMedium 为 ZPageSizeMedium / 8,则通常情况下,medium 页的对象 size 限制为 4MB。超过 4MB 的对象需要放入 large 页。

对于 large page 的处理如下:

zObjectAllocator.cpp

uintptr_t ZObjectAllocator::alloc_large_object(size_t size, ZAllocationFlags flags) { uintptr_t addr = 0; // Allocate new large page const size_t page_size = align_up(size, ZGranuleSize); ZPage* const page = alloc_page(ZPageTypeLarge, page_size, flags); if (page != NULL) { // Allocate the object addr = page->alloc_object(size); } return addr; }分配大对象时,触发分配 large page;对齐大对象 size 到 2MB 的倍数后分配 large page。

zObjectAllocator.cpp

uintptr_t ZObjectAllocator::alloc_object(size_t size, ZAllocationFlags flags) { if (size <= ZObjectSizeLimitSmall) { // Small return alloc_small_object(size, flags); } else if (size <= ZObjectSizeLimitMedium) { // Medium return alloc_medium_object(size, flags); } else { // Large return alloc_large_object(size, flags); } }当对象 size 大于 medium 页对象 size 限制时,触发大对象分配;因此,large 页的实际 size 很可能小于 medium 页 size。Page 的分配

Page 分配的入口在 ZHeap 的 alloc_page 方法:

zHeap.cpp

ZPage* ZObjectAllocator::alloc_page(uint8_t type, size_t size, ZAllocationFlags flags) { // 调用了page分配器的alloc_page函数 ZPage* const page = ZHeap::heap()->alloc_page(type, size, flags); if (page != NULL) { // 增加使用内存数 Atomic::add(_used.addr(), size); } return page; }

zPageAllocator.cpp

ZPage* ZPageAllocator::alloc_page(uint8_t type, size_t size, ZAllocationFlags flags) { EventZPageAllocation event; retry: ZPageAllocation allocation(type, size, flags); // 从page cache分配page // 如果分配成功,调用alloc_page_finalize完成分配 // 分配过程中,如果是阻塞模式,有可能在安全点被阻塞 if (!alloc_page_or_stall(&allocation)) { // Out of memory return NULL; } // 如果从page cache分配失败,则从物理内存申请页 // 提交page ZPage* const page = alloc_page_finalize(&allocation); if (page == NULL) { // 如果commit或者map失败,则goto到retry,重新分配 alloc_page_failed(&allocation); goto retry; } // ... // ... // ... return page; } bool ZPageAllocator::alloc_page_or_stall(ZPageAllocation* allocation) { { // 分配page需要上锁,因为只有一个堆 ZLocker<ZLock> locker(&_lock); // 分配成功,返回true if (alloc_page_common(allocation)) { return true; } // 如果是非阻塞模式,返回false if (allocation->flags().non_blocking()) { return false; } // 分配请求入队,等待GC完成 _stalled.insert_last(allocation); } return alloc_page_stall(allocation); } // 阻塞分配,等待GC bool ZPageAllocator::alloc_page_stall(ZPageAllocation* allocation) { ZStatTimer timer(ZCriticalPhaseAllocationStall); EventZAllocationStall event; ZPageAllocationStall result; // 检查虚拟机是否已经完成初始化 check_out_of_memory_during_initialization(); do { // 启动异步GC ZCollectedHeap::heap()->collect(GCCause::_z_allocation_stall); // 挂起,等待GC结果 result = allocation->wait(); } while (result == ZPageAllocationStallStartGC); // ... // ... // ... return (result == ZPageAllocationStallSuccess); }阻塞分配与非阻塞分配,由系统参数 ZStallOnOutOfMemory 控制,默认阻塞分配。阻塞分配时,如果分配失败,则触发 GC,等待 GC 结束后再次分配,直到分配成功。对象分配

自从 JDK10 中的引入了 JEP 304: Garbage Collector Interface 后,OpenJDK 定义了一整套关于 GC 的虚方法,供具体的 GC 算法实现。极大了简化了开发难度和代码的可维护性。

JEP 304 定义了 CollectedHeap 类,每个 GC 都需要实现。CollectedHeap 类负责驱动 HotSpot 的 GC,以及和其他模块的交互。GC 应当实现如下功能:

CollectedHeap 的子类;BarrierSet 集合类的实现,提供在运行时各种屏障功能;CollectorPolicy 类的实现;GCInterpreterSupport 的实现,提供 GC 在解释执行时各种屏障功能(使用汇编指令);GCC1Support 的实现,提供 GC 在 C1 编译代码中各种屏障功能;GCC2Support 的实现,提供 GC 在 C2 编译代码中各种屏障功能;最终 GC 指定参数的初始化;一个 MemoryService,提供内存池、内存管理等。

通常地,对象分配的入口在 InstanceKlass::allocate_instance,该方法调用 heap->obj_allocate()进行分配。

instanceOop InstanceKlass::allocate_instance(TRAPS) { bool has_finalizer_flag = has_finalizer(); // Query before possible GC int size = size_helper();// Query before forming handle. instanceOop i; i = (instanceOop)Universe::heap()->obj_allocate(this, size, CHECK_NULL); if (has_finalizer_flag && !RegisterFinalizersAtInit) { // 对于实现了finalize方法的类的实例的特殊处理 i = register_finalizer(i, CHECK_NULL); } return i; }CollectedHeap 对象分配流程图

对象分配一般遵循如下流程:

<a href=https://www.tuishengyi.com/wltg/ target=_blank class=infotextkey>软文推广</a>:OpenJDK16ZGC源码分析源码分析ZCollectedHeap

ZCollectedHeap 重载了 CollectedHeap 的方法,其中包含了对象分配的相关方法。而核心逻辑在放在 ZHeap 中。ZCollectedHeap 中主要的成员方法如下:

class ZCollectedHeap : public CollectedHeap { friend class VMStructs; private: // 软引用清理策略 SoftRefPolicy _soft_ref_policy; // 内存屏障,解释执行/C1/C2执行时对象访问的屏障 ZBarrierSet _barrier_set; // 初始化逻辑 ZInitialize _initialize; // 堆管理的核心逻辑,包括对象分配、转移、标记 ZHeap _heap; // 垃圾回收线程,触发 ZDirector*_director; // 垃圾回收线程,执行 ZDriver*_driver; // 垃圾回收线程,统计 ZStat*_stat; // 工作线程 ZRuntimeWorkers _runtime_workers; }ZHeap

ZHeap 是 ZGC 内存管理的核心类。主要变量如下:

class ZHeap { friend class VMStructs; private: static ZHeap* _heap; // 工作线程 ZWorkers_workers; // 对象分配器 ZObjectAllocator_object_allocator; // 页面分配器 ZPageAllocator_page_allocator; // 页表 ZPageTable_page_table; // 转发表,用于对象迁移后的指针映射 ZForwardingTable_forwarding_table; // 标记管理 ZMark _mark; // 引用处理器 ZReferenceProcessor _reference_processor; // 弱引用处理器 ZWeakRootsProcessor _weak_roots_processor; // 转移管理器,用于对象迁移(类比G1的疏散) ZRelocate _relocate; // 转移集合 ZRelocationSet_relocation_set; // 从元空间卸载类 ZUnload _unload; ZServiceability _serviceability; }对象分配器

对象分配的主要逻辑在 ZObjectAllocator。

对象分配器主要变量

ZObjectAllocator 的主要变量如下:

class ZObjectAllocator { private: const bool _use_per_cpu_shared_small_pages; // 分CPU记录使用内存size ZPerCPU<size_t>_used; // 分CPU记录undo内存size ZPerCPU<size_t>_undone; // 缓存行对齐的模板类 ZContended<ZPage*> _shared_medium_page; // 按CPU从缓存分配对象 ZPerCPU<ZPage*>_shared_small_page; }分配方法

对象分配的核心方法是 alloc_object

uintptr_t ZObjectAllocator::alloc_object(size_t size, ZAllocationFlags flags) { if (size <= ZObjectSizeLimitSmall) { // Small return alloc_small_object(size, flags); } else if (size <= ZObjectSizeLimitMedium) { // Medium return alloc_medium_object(size, flags); } else { // Large return alloc_large_object(size, flags); } }按对象的 size,决定调用 small page 分配、medium page 分配还是 large page 分配。分配入参除了 size 外,还有个 ZAllocationFlags。ZAllocationFlags 是个 8bit 的配置参数。

large page 分配方法如下:

uintptr_t ZObjectAllocator::alloc_large_object(size_t size, ZAllocationFlags flags) { uintptr_t addr = 0; // 对齐2MB const size_t page_size = align_up(size, ZGranuleSize); // 分配页面 ZPage* const page = alloc_page(ZPageTypeLarge, page_size, flags); if (page != NULL) { // 在页面中分配对象 addr = page->alloc_object(size); } return addr; }small page 分配和 medium page 分配都会调用到 alloc_object_in_shared_page 方法;小对象和中对象的分配略有不同,小对象是根据所在 CPU 从共享页面中分配对象。而中对象则是全部线程共享一个 medium page。// shared_page:页面地址 // page_type:page类型,small还是medium // page_size: page size // size: 对象size // flags: 分配标识 uintptr_t ZObjectAllocator::alloc_object_in_shared_page(ZPage** shared_page, uint8_t page_type, size_t page_size, size_t size, ZAllocationFlags flags) { uintptr_t addr = 0; // 获取一个page ZPage* page = Atomic::load_acquire(shared_page); if (page != NULL) { // 调用page的分配对象方法 addr = page->alloc_object_atomic(size); } if (addr == 0) { // 如果刚才没有获取page成功,则分配一个new page ZPage* const new_page = alloc_page(page_type, page_size, flags); if (new_page != NULL) { // 先分配对象,然后加载page到shared_page缓存 addr = new_page->alloc_object(size); retry: // 加载page到shared_page缓存 ZPage* const prev_page = Atomic::cmpxchg(shared_page, page, new_page); if (prev_page != page) { if (prev_page == NULL) { // 如果prev_page已经淘汰,则goto到retry一直重试 page = prev_page; goto retry; } // 其他线程加载了页面,则使用prev_page分配 const uintptr_t prev_addr = prev_page->alloc_object_atomic(size); if (prev_addr == 0) { // 如果分配失败,则goto到retry一直重试 page = prev_page; goto retry; } addr = prev_addr; undo_alloc_page(new_page); } } } return addr; }Page 内的对象分配

page 内的对象分配主要是两个方法 alloc_object_atomic 和 alloc_object,其中 alloc_object 没有锁竞争,主要用于新 page 的第一次对象分配。

先看 alloc_object_atomic

inline uintptr_t ZPage::alloc_object_atomic(size_t size) { assert(is_allocating(), "Invalid state"); // 对象对齐,默认8字节对齐 const size_t aligned_size = align_up(size, object_alignment()); uintptr_t addr = top(); for (;;) { const uintptr_t new_top = addr + aligned_size; if (new_top > end()) { // page没有申昱空间,则返回0 return 0; } // cas操作更新prev_top指针 const uintptr_t prev_top = Atomic::cmpxchg(&_top, addr, new_top); if (prev_top == addr) { // 调用ZAddress::good获取colored pointer return ZAddress::good(addr); } // 无限重试 addr = prev_top; } }

再看看 alloc_object

inline uintptr_t ZPage::alloc_object(size_t size) { assert(is_allocating(), "Invalid state"); // 对象空间对齐,默认8字节 const size_t aligned_size = align_up(size, object_alignment()); const uintptr_t addr = top(); const uintptr_t new_top = addr + aligned_size; if (new_top > end()) { // 剩余空间不足,返回0 return 0; } _top = new_top; // 调用ZAddress::good获取colored pointer return ZAddress::good(addr); }Colored pointer 的计算

可以看到上述两个方法在分配结束都调用了 ZAddress::good 返回 colored pointer。看看 ZAddress::good 的实现。

inline uintptr_t ZAddress::offset(uintptr_t value) { return value & ZAddressOffsetMask; } inline uintptr_t ZAddress::good(uintptr_t value) { return offset(value) | ZAddressGoodMask; } void ZAddress::set_good_mask(uintptr_t mask) { ZAddressGoodMask = mask; ZAddressBadMask = ZAddressGoodMask ^ ZAddressMetadataMask; ZAddressWeakBadMask = (ZAddressGoodMask | ZAddressMetadataRemapped | ZAddressMetadataFinalizable) ^ ZAddressMetadataMask; }good 方法其实挺简单,先取 4 位染色值,然后或操作实际地址,获取 colored pointer。colored pointer 将在 load barrier 中使用,后文将详细介绍 load barrier 机制。读屏障

对于并发 GC 来说,最复杂的事情在于 GC worker 在标记-整理,而 Java 线程(Mutator)同时还在不断的创建新对象、修改字段,不停的更新对象引用关系。因此并发 GC 一般采用两种策略 Incremental Update(增量更新、CMS) 和 SATB(snapshot at beginning、G1) ,两种策略网上介绍文章很多,此处不再赘述。

SATB 重点关注引用关系的删除,可以参考我之前的博客 JVM G1 源码分析(四)- Dirty Card Queue Set(),而 Incremental Update 重点关注引用关系的增加。

而 ZGC 并没有采取类似方式,而是借助读屏障、colored pointer 来实现并发标记-整理。

原理什么是 Load Barrier一小段在最佳位置由 JIT 注入的代码从堆中加载一个对象引用时检查这个引用是否是 bad color如果是,则自愈Load Barrier 的触发

从堆中加载对象引用时触发 load barrier。

// 从堆中加载一个对象引用,需要load barrier String n = person.name; // 不需要load barrier,不是从堆中加载 String p = n; // 不需要load barrier,不是从堆中加载 n.isEmpty(); // 不需要load barrier,不是引用类型 int age = person.age;

当引用类型 n 被赋值修改后,在下一次使用 n 前,会测试 n 的染色指针是否为 good。此时测试为 bad color 可知 n 的引用地址进行过修改,需要自愈。

触发 load barrier 的伪代码如下:

// 从堆中加载一个对象引用,需要load barrier String n = person.name; if (n & bad_bit_mask) { slow_path(register_for(n), address_of) }

对应的汇编代码:

// String n = person.name; mov 0x10(%rax), %rbx // 是否bad color test %rbx, (0x16)%r15 // 如是,进入slow path jnz slow_path源码分析掩码

zGlobals.hpp

// // Good/Bad mask states // -------------------- // // GoodMask BadMaskWeakGoodMask WeakBadMask // -------------------------------------------------------------- //Marked0001110101010 //Marked1010101110001 //Remapped 100011100011 // // Good/bad masks extern uintptr_tZAddressGoodMask; extern uintptr_tZAddressBadMask; extern uintptr_tZAddressWeakBadMask;

zAddress.inline.hpp

inline bool ZAddress::is_null(uintptr_t value) { return value == 0; } inline bool ZAddress::is_bad(uintptr_t value) { return value & ZAddressBadMask; } inline bool ZAddress::is_good(uintptr_t value) { return !is_bad(value) && !is_null(value); }

从以上两段代码可以很清晰看出,colored pointer 的状态是 Good/WeakGood/Bad/WeakBad 由 GoodMask 及 BadMask 来测定。

同时,GoodMask、BadMask 由 GC 所处的阶段决定。

void ZAddress::set_good_mask(uintptr_t mask) { ZAddressGoodMask = mask; ZAddressBadMask = ZAddressGoodMask ^ ZAddressMetadataMask; ZAddressWeakBadMask = (ZAddressGoodMask | ZAddressMetadataRemapped | ZAddressMetadataFinalizable) ^ ZAddressMetadataMask; } void ZAddress::initialize() { ZAddressOffsetBits = ZPlatformAddressOffsetBits(); ZAddressOffsetMask = (((uintptr_t)1 << ZAddressOffsetBits) - 1) << ZAddressOffsetShift; ZAddressOffsetMax = (uintptr_t)1 << ZAddressOffsetBits; ZAddressMetadataShift = ZPlatformAddressMetadataShift(); ZAddressMetadataMask = (((uintptr_t)1 << ZAddressMetadataBits) - 1) << ZAddressMetadataShift; ZAddressMetadataMarked0 = (uintptr_t)1 << (ZAddressMetadataShift + 0); ZAddressMetadataMarked1 = (uintptr_t)1 << (ZAddressMetadataShift + 1); ZAddressMetadataRemapped = (uintptr_t)1 << (ZAddressMetadataShift + 2); ZAddressMetadataFinalizable = (uintptr_t)1 << (ZAddressMetadataShift + 3); ZAddressMetadataMarked = ZAddressMetadataMarked0; set_good_mask(ZAddressMetadataRemapped); } void ZAddress::flip_to_marked() { ZAddressMetadataMarked ^= (ZAddressMetadataMarked0 | ZAddressMetadataMarked1); set_good_mask(ZAddressMetadataMarked); } void ZAddress::flip_to_remapped() { set_good_mask(ZAddressMetadataRemapped); }

比如,ZGC 初始化后,地址视图为 Remapped,GoodMask 是 100,BadMask 是 011。进入标记阶段后,地址视图切换为 M0,GoodMask 和 BadMask 变更为 001 和 110。

屏障的进入条件

accessDecorators.cpp

// === Access Location === // 对堆的访问 const DecoratorSet IN_HEAP= UCONST64(1) << 18; // 对堆外的访问 const DecoratorSet IN_NATIVE= UCONST64(1) << 19; const DecoratorSet IN_DECORATOR_MASK= IN_HEAP | IN_NATIVE;

zBarrierSet.cpp

bool ZBarrierSet::barrier_needed(DecoratorSet decorators, BasicType type) { assert((decorators & AS_RAW) == 0, "Unexpected decorator"); //assert((decorators & ON_UNKNOWN_OOP_REF) == 0, "Unexpected decorator"); // 是否引用类型 if (is_reference_type(type)) { // 是否从堆中或者堆外加载一个对象引用 assert((decorators & (IN_HEAP | IN_NATIVE)) != 0, "Where is reference?"); // Barrier needed even when IN_NATIVE, to allow concurrent scanning. return true; } // Barrier not needed return false; }屏障

load barrier 的入口代码在 zBarrier.inline.hpp

// 模板函数 template <ZBarrierFastPath fast_path, ZBarrierSlowPath slow_path> inline oop ZBarrier::barrier(volatile oop* p, oop o) { const uintptr_t addr = ZOop::to_address(o); // 如果是good指针,只需做一次类型转换 if (fast_path(addr)) { return ZOop::from_address(addr); } // 否则,进入slow path const uintptr_t good_addr = slow_path(addr); // 指针自愈 if (p != NULL) { self_heal<fast_path>(p, addr, good_addr); } // 类型转换 return ZOop::from_address(good_addr); }barrier 接收两个模板函数指针,根据输入函数的执行结果决定走 fast path 还是 slow path;fast path 仅需一次类型转换;slow path 执行后,还需要进行指针自愈,最后返回前做类型转换。fast path

fast path 根据执行场景和 colored pointer 不同有不少选择,使用比较多的如下:zBarrier.inline.hpp

// 又调回到ZAddress的inline函数了,都是一堆用colored pointer & 掩码的操作 inline bool ZBarrier::is_good_or_null_fast_path(uintptr_t addr) { return ZAddress::is_good_or_null(addr); } inline bool ZBarrier::is_weak_good_or_null_fast_path(uintptr_t addr) { return ZAddress::is_weak_good_or_null(addr); } inline bool ZBarrier::is_marked_or_null_fast_path(uintptr_t addr) { return ZAddress::is_marked_or_null(addr); }slow path

同样的 slow path 根据场景不同,也有好几个选择,但是使用较多的就是 load_barrier_on_oop_slow_path zBarrier.cpp

uintptr_t ZBarrier::load_barrier_on_oop_slow_path(uintptr_t addr) { // 迁移还是标记 return relocate_or_mark(addr); } // 迁移 uintptr_t ZBarrier::relocate(uintptr_t addr) { assert(!ZAddress::is_good(addr), "Should not be good"); assert(!ZAddress::is_weak_good(addr), "Should not be weak good"); // 调用heap的relocate_object return ZHeap::heap()->relocate_object(addr); }迁移对象

zHeap.inline.cpp zRelocate.cpp

// 迁移对象 inline uintptr_t ZHeap::relocate_object(uintptr_t addr) { assert(ZGlobalPhase == ZPhaseRelocate, "Relocate not allowed"); // 从forwarding table拿到地址映射关系 // forwarding table会在后文介绍GC的执行过程时详细介绍。先简单理解成一个旧地址到新地址的映射好了。 ZForwarding* const forwarding = _forwarding_table.get(addr); if (forwarding == NULL) { // 不在forwarding table内,那就是个good address return ZAddress::good(addr); } // 迁移对象 return _relocate.relocate_object(forwarding, ZAddress::good(addr)); } // 实际的迁移方法 uintptr_t ZRelocate::relocate_object(ZForwarding* forwarding, uintptr_t from_addr) const { ZForwardingCursor cursor; // 在forwarding table找到新地址 // 如果新地址非0,则表示对象已经疏散到新page了,直接返回新地址 // 如果新地址为0,则先迁移对象 uintptr_t to_addr = forwarding_find(forwarding, from_addr, &cursor); if (to_addr != 0) { // Already relocated return to_addr; } // 迁移对象 if (forwarding->retain_page()) { to_addr = relocate_object_inner(forwarding, from_addr, &cursor); forwarding->release_page(); if (to_addr != 0) { // 迁移成功 return to_addr; } // 如果迁移失败,等待GC 工作线程完成迁移整个page forwarding->wait_page_released(); } return forward_object(forwarding, from_addr); }标记

zBarrier.cpp zHeap.inline.cpp

template <bool follow, bool finalizable, bool publish> uintptr_t ZBarrier::mark(uintptr_t addr) { uintptr_t good_addr; if (ZAddress::is_marked(addr)) { // 如果已经标记过,或 Good掩码 good_addr = ZAddress::good(addr); } else if (ZAddress::is_remapped(addr)) { // 如果remapped,表示GC开始前创建的对象,或 Good掩码 // 需要标记 good_addr = ZAddress::good(addr); } else { // 需要remap和标记 good_addr = remap(addr); } // 标记对象 if (should_mark_through<finalizable>(addr)) { ZHeap::heap()->mark_object<follow, finalizable, publish>(good_addr); } if (finalizable) { // 如果是可回收对象,则或Finalizable和Good掩码 return ZAddress::finalizable_good(good_addr); } return good_addr; } // 调用ZHeap的remap对象 uintptr_t ZBarrier::remap(uintptr_t addr) { assert(!ZAddress::is_good(addr), "Should not be good"); assert(!ZAddress::is_weak_good(addr), "Should not be weak good"); return ZHeap::heap()->remap_object(addr); } // remap对象 inline uintptr_t ZHeap::remap_object(uintptr_t addr) { assert(ZGlobalPhase == ZPhaseMark || ZGlobalPhase == ZPhaseMarkCompleted, "Forward not allowed"); ZForwarding* const forwarding = _forwarding_table.get(addr); if (forwarding == NULL) { // 如果forwarding table中没有,则无需迁移 return ZAddress::good(addr); } // 迁移对象 // 主要是迁移上一次GC时标记的对象 return _relocate.forward_object(forwarding, ZAddress::good(addr)); }指针自愈

zBarrier.inline.hpp

template <ZBarrierFastPath fast_path> inline void ZBarrier::self_heal(volatile oop* p, uintptr_t addr, uintptr_t heal_addr) { if (heal_addr == 0) { return; } assert(!fast_path(addr), "Invalid self heal"); assert(fast_path(heal_addr), "Invalid self heal"); // 死循环 for (;;) { // CAS good指针替换原指针 const uintptr_t prev_addr = Atomic::cmpxchg((volatile uintptr_t*)p, addr, heal_addr); if (prev_addr == addr) { // CAS成功即可返回 return; } if (fast_path(prev_addr)) { // 如果fast path判断为true,则直接返回 return; } // 走到这儿,可能是指针已经被其他barrier自愈了。 assert(ZAddress::offset(prev_addr) == ZAddress::offset(heal_addr), "Invalid offset"); addr = prev_addr; } }

总的来说,ZGC 的 load barrier 是个非常精巧的设计,借助 colored pointer 和多视图,有效地避免了 load barrier 带来的性能压力。

加入我们

我们是线索智能营销团队,负责字节跳动线索营销型产品研发。致力于帮助百万中小广告主更快速、更高效地获取高价值客户。利用字节的精准流量、数据智能技术,为广告主提供了具有线索获取、线索跟进、培育销转和再营销增长闭环的一站式客户线索管理平台。期待您的加入。

社招:

实习生:

相关推荐

留言与评论(共有 0 条评论)
   
验证码:
'); })();